Skip to content
View YeongHyeon's full-sized avatar

Highlights

  • Pro

Block or report YeongHyeon

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
YeongHyeon/README.md

  stat

CV Google Scholar LinkedIn HuggingFace

Recent Publications

International Journal

  • Visual Defect Obfuscation Based Self-Supervised Anomaly Detection
    YeongHyeon Park, Sungho Kang, Myung Jin Kim, Yeonho Lee, Hyeong Seok Kim, Juneho Yi
    Scientific Reports, 2024
    Q1
    [paper] [poster]
  • Boost-up Efficiency of Defective Solar Panel Detection with Pre-trained Attention Recycling
    YeongHyeon Park, Myung Jin Kim, Uju Gim, Juneho Yi
    IEEE Transactions on Industry Applications, 2023
    Q1
    [paper] [slide]

International Conference

  • Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection
    YeongHyeon Park, Sungho Kang, Myung Jin Kim, Hyeong Seok Kim, Juneho Yi
    IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2025 VAND3.0 workshop) (Accepted)
    [arXiv] [poster]
  • Contrastive Language Prompting to Ease False Positives in Medical Anomaly Detection
    YeongHyeon Park, Myung Jin Kim, Hyeong Seok Kim
    IEEE International Symposium on Biomedical Imaging (ISBI 2025)
    [paper] [poster]
  • Exploiting Connection-Switching U-Net for Enhancing Surface Anomaly Detection
    YeongHyeon Park, Sungho Kang, Myung Jin Kim, Yeonho Lee, Juneho Yi
    IEEE International Conference on Electrical, Control and Instrumentation Engineering (ICECIE 2024)
    [paper] [slide]
  • Neural Network Training Strategy to Enhance Anomaly Detection Performance: A Perspective on Reconstruction Loss Amplification
    YeongHyeon Park, Sungho Kang, Myung Jin Kim, Hyeonho Jeong, Hyunkyu Park, Hyeong Seok Kim, Juneho Yi
    IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024)
    [paper] [poster]
Repositories
Repositories  
│
├── TensorFlow 
│    ├── Publications (Sorted by year in ascending order)
│    │    ├── Preprocessing Method for Performance Enhancement in CNN-based STEMI Detection from 12-lead ECG
│    │    │    ├── IEEE Access (2019): https://ieeexplore.ieee.org/abstract/document/8771175
│    │    │    └── Source: https://github.com/YeongHyeon/Preprocessing-Method-for-STEMI-Detection
│    │    ├── Arrhythmia detection in electrocardiogram based on recurrent neural network encoder–decoder with Lyapunov exponent
│    │    │    ├── IEEJ (2018): https://onlinelibrary.wiley.com/doi/abs/10.1002/tee.22927
│    │    │    └── Source: https://github.com/YeongHyeon/Arrhythmia_Detection_RNN_and_Lyapunov
│    │    └── Fast Adaptive RNN Encoder–Decoder for Anomaly Detection in SMD Assembly Machine
│    │         ├── MDPI (2018): https://www.mdpi.com/1424-8220/18/10/3573
│    │         └── Source: https://github.com/YeongHyeon/FARED_for_Anomaly_Detection
│    │  
│    ├── Discriminative Model
│    │    ├── Series Inception
│    │    │    ├── Inception: https://github.com/YeongHyeon/Inception_Simplified-TF2
│    │    │    └── XCeption: https://github.com/YeongHyeon/XCeption-TF2
│    │    ├── Series Residual
│    │    │    ├── ResNet: https://github.com/YeongHyeon/ResNet-TF2
│    │    │    ├── ResNeXt: https://github.com/YeongHyeon/ResNeXt-TF2
│    │    │    ├── WRN: https://github.com/YeongHyeon/WideResNet_WRN-TF2
│    │    │    ├── ResNeSt: https://github.com/YeongHyeon/ResNeSt-TF2
│    │    │    └── ReXNet: https://github.com/YeongHyeon/ReXNet-TF2
│    │    ├── Series Bayesian / Gaussian
│    │    │    └── SWA-Gaussian: https://github.com/YeongHyeon/SWA-Gaussian-TF2
│    │    ├── Series Graph
│    │    │    └── PIPGCN: https://github.com/YeongHyeon/PIPGCN-TF2
│    │    └── Ohters
│    │         ├── SE-Net: https://github.com/YeongHyeon/SENet-Simple
│    │         ├── SK-Net: https://github.com/YeongHyeon/SKNet-TF2
│    │         ├── GhostNet: https://github.com/YeongHyeon/GhostNet
│    │         ├── Network-in-Network: https://github.com/YeongHyeon/Network-in-Network-TF2
│    │         ├── Shake-Shake Regularization: https://github.com/YeongHyeon/Shake-Shake
│    │         ├── MNIST Attention Map: https://github.com/YeongHyeon/MNIST_AttentionMap
│    │         └── MLP-Mixer: https://github.com/YeongHyeon/MLP-Mixer-TF2
│    │    
│    ├── Generative Model
│    │    ├── Generals
│    │    │    ├── GAN: https://github.com/YeongHyeon/GAN-TF
│    │    │    ├── WGAN: https://github.com/YeongHyeon/WGAN-TF
│    │    │    ├── CGAN: https://github.com/YeongHyeon/CGAN-TF
│    │    │    ├── Normalizing Flow: https://github.com/YeongHyeon/Normalizing-Flow-TF2
│    │    │    └── Transformer: https://github.com/YeongHyeon/Transformer-TF2
│    │    ├── Anomaly Detection
│    │    │    ├── CVAE (Convolution & Variational): https://github.com/YeongHyeon/CVAE-AnomalyDetection
│    │    │    ├── GANomaly: https://github.com/YeongHyeon/GANomaly-TF
│    │    │    ├── Skip-GANomaly: https://github.com/YeongHyeon/Skip-GANomaly
│    │    │    ├── ConAD: https://github.com/YeongHyeon/ConAD
│    │    │    ├── MemAE: https://github.com/YeongHyeon/MemAE
│    │    │    ├── f-AnoGAN: https://github.com/YeongHyeon/f-AnoGAN-TF
│    │    │    ├── DGM: https://github.com/YeongHyeon/DGM-TF
│    │    │    └── ADAE: https://github.com/YeongHyeon/ADAE-TF
│    │    └── Special Purpose
│    │         ├── SRCNN: https://github.com/YeongHyeon/Super-Resolution_CNN
│    │         ├── Context-Encoder: https://github.com/YeongHyeon/Context-Encoder
│    │         └── Sequence-Autoencoder: https://github.com/YeongHyeon/Sequence-Autoencoder
│    │    
│    └── Additional Methods
│         ├── SGDR: https://github.com/YeongHyeon/ResNet-with-SGDR-TF2
│         ├── Learning rate WarmUp: https://github.com/YeongHyeon/ResNet-with-LRWarmUp-TF2
│         └── ArcFace: https://github.com/YeongHyeon/ArcFace-TF2
│
└── PyTorch
     ├── Discriminative Model
     │    └── Ohters
     │         ├── MLP-Mixer: https://github.com/YeongHyeon/MLP-Mixer-PyTorch
     │         ├── GhostNet: https://github.com/YeongHyeon/GhostNet-PyTorch
     │         └── DINO: https://github.com/YeongHyeon/DINO_MNIST-PyTorch
     └── Generative Model
          ├── Anomaly Detection
          │    ├── CVAE (Convolution & Variational): https://github.com/YeongHyeon/CVAE-AnomalyDetection-PyTorch
          │    ├── GANomaly: https://github.com/YeongHyeon/GANomaly-PyTorch
          │    ├── ConAD: https://github.com/YeongHyeon/ConAD-PyTorch
          │    └── RIAD: https://github.com/YeongHyeon/RIAD-PyTorch
          └── Special Purpose
               └── SRCNN: https://github.com/YeongHyeon/Super-Resolution_CNN-PyTorch
Kaggle

Notebooks Expert 🎓

Competition

  • 🥉 RSNA 2023 Abdominal Trauma Detection

Datasets

Pinned Loading

  1. R-CNN_LIGHT R-CNN_LIGHT Public

    Regional-Convolution Neural Network for blink detection based on contouring.

    Python 66 21

  2. ResNeSt-TF2 ResNeSt-TF2 Public

    TensorFlow implementation of "ResNeSt: Split-Attention Networks"

    Python 67 17

  3. Super-Resolution_CNN Super-Resolution_CNN Public

    Implementation of "Image Super-Resolution using Deep Convolutional Network"

    Python 46 13

  4. FARED_for_Anomaly_Detection FARED_for_Anomaly_Detection Public

    Official source code of "Fast Adaptive RNN Encoder-Decoder for Anomaly Detection in SMD Assembly Machine"

    Python 17 4

  5. MemAE-TF2 MemAE-TF2 Public

    TensorFlow implementation of "Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection"

    Python 25 5

  6. SWA-Gaussian-TF2 SWA-Gaussian-TF2 Public

    TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

    Python 8